Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Bacteriol ; 204(10): e0024722, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36094307

RESUMO

The disease-producing capacity of the opportunistic pathogen Enterococcus faecalis is enhanced by the ability of the bacterium to evade killing by antimicrobial agents. Survival of E. faecalis in the presence of the human antimicrobial enzyme lysozyme is mediated in part by the site 2 metalloprotease Eep; however, a complete model of enterococcal lysozyme resistance has not been elucidated. To better understand the molecular basis for lysozyme resistance in E. faecalis, we analyzed Δeep suppressor mutants that acquire resistance to lysozyme through mutation of the gene OG1RF_11713, a predicted teichoic acid biosynthesis-encoding gene located within the variable region of the enterococcal polysaccharide antigen (epa) locus. Sequence comparisons revealed that OG1RF_11713 is most similar to the cytidine-5'-diphosphate (CDP)-glycerol:poly-(glycerolphosphate)glycerophosphotransferase TagF from Staphylococcus epidermidis. Inactivation of OG1RF_11713 in both the wild-type and Δeep genetic backgrounds was sufficient to increase the resistance of E. faecalis OG1RF to lysozyme. Minimal amounts of N-acetylgalactosamine were detectable in cell wall carbohydrate extracts of OG1RF_11713 deletion mutants, and this was associated with a reduction in negative cell surface charge. Targeted disruption of OG1RF_11713 was also associated with increased susceptibility to the antibiotic polymyxin B and membrane-targeting detergents and decreased susceptibility to the lantibiotic nisin. This work implicates OG1RF_11713 as a major determinant of cell envelope integrity and provides further validation that lysozyme resistance is intrinsically linked to the modification of enterococcal cell wall polysaccharides. IMPORTANCE Enterococcus faecalis is a leading cause of health-care-associated infections for which there are limited treatment options. E. faecalis is resistant to several antibiotics and to high concentrations of the human antimicrobial enzyme lysozyme. The molecular mechanisms that mediate lysozyme resistance in E. faecalis are complex and remain incompletely characterized. This work demonstrates that a gene located within the variable region of the enterococcal polysaccharide antigen locus of E. faecalis strain OG1RF (OG1RF_11713), which is predicted to encode a component of the teichoic acid biosynthesis machinery, is part of the lysozyme resistance circuitry and is important for enterococcal cell wall integrity. These findings suggest that OG1RF_11713 is a potential target for new therapeutic strategies to combat enterococcal infections.


Assuntos
Enterococcus faecalis , Nisina , Humanos , Enterococcus faecalis/genética , Enterococcus faecalis/metabolismo , Nisina/genética , Muramidase/metabolismo , Detergentes/metabolismo , Polimixina B , Acetilgalactosamina , Glicerofosfatos , Difosfatos/metabolismo , Glicerol/metabolismo , Polissacarídeos/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Fenótipo , Citidina , Cistina Difosfato/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
Antimicrob Agents Chemother ; 57(11): 5432-7, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23959313

RESUMO

Gram-positive bacteria cause serious human illnesses through combinations of cell surface and secreted virulence factors. We initiated studies with four of these organisms to develop novel topical antibacterial agents that interfere with growth and exotoxin production, focusing on menaquinone analogs. Menadione, 1,4-naphthoquinone, and coenzymes Q1 to Q3 but not menaquinone, phylloquinone, or coenzyme Q10 inhibited the growth and to a greater extent exotoxin production of Staphylococcus aureus, Bacillus anthracis, Streptococcus pyogenes, and Streptococcus agalactiae at concentrations of 10 to 200 µg/ml. Coenzyme Q1 reduced the ability of S. aureus to cause toxic shock syndrome in a rabbit model, inhibited the growth of four Gram-negative bacteria, and synergized with another antimicrobial agent, glycerol monolaurate, to inhibit S. aureus growth. The staphylococcal two-component system SrrA/B was shown to be an antibacterial target of coenzyme Q1. We hypothesize that menaquinone analogs both induce toxic reactive oxygen species and affect bacterial plasma membranes and biosynthetic machinery to interfere with two-component systems, respiration, and macromolecular synthesis. These compounds represent a novel class of potential topical therapeutic agents.


Assuntos
Antibacterianos/farmacologia , Bacillus anthracis/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus pyogenes/efeitos dos fármacos , Vitamina K 2/farmacologia , Administração Tópica , Animais , Bacillus anthracis/crescimento & desenvolvimento , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Membrana Celular/efeitos dos fármacos , Sinergismo Farmacológico , Exotoxinas/antagonistas & inibidores , Exotoxinas/metabolismo , Humanos , Lauratos/farmacologia , Monoglicerídeos/farmacologia , Coelhos , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Choque Séptico/tratamento farmacológico , Choque Séptico/microbiologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo , Streptococcus agalactiae/crescimento & desenvolvimento , Streptococcus pyogenes/crescimento & desenvolvimento
3.
Clin Microbiol Rev ; 26(3): 422-47, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23824366

RESUMO

SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.


Assuntos
Exotoxinas/imunologia , Staphylococcus aureus/imunologia , Streptococcus pyogenes/imunologia , Superantígenos/imunologia , Animais , Exotoxinas/química , Humanos , Modelos Moleculares , Infecções Estafilocócicas/microbiologia , Infecções Estreptocócicas/microbiologia , Superantígenos/química
4.
Infect Immun ; 81(5): 1696-708, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23460519

RESUMO

Enterococcus faecalis is part of the human intestinal microbiome and is a prominent cause of health care-associated infections. The pathogenesis of many E. faecalis infections, including endocarditis and catheter-associated urinary tract infection (CAUTI), is related to the ability of clinical isolates to form biofilms. To identify chromosomal genetic determinants responsible for E. faecalis biofilm-mediated infection, we used a rabbit model of endocarditis to test strains with transposon insertions or in-frame deletions in biofilm-associated loci: ahrC, argR, atlA, opuBC, pyrC, recN, and sepF. Only the ahrC mutant was significantly attenuated in endocarditis. We demonstrate that the transcriptional regulator AhrC and the protease Eep, which we showed previously to be an endocarditis virulence factor, are also required for full virulence in murine CAUTI. Therefore, AhrC and Eep can be classified as enterococcal biofilm-associated virulence factors. Loss of ahrC caused defects in early attachment and accumulation of biofilm biomass. Characterization of ahrC transcription revealed that the temporal expression of this locus observed in wild-type cells promotes initiation of early biofilm formation and the establishment of endocarditis. This is the first report of AhrC serving as a virulence factor in any bacterial species.


Assuntos
Proteínas de Bactérias/fisiologia , Biofilmes , Endocardite Bacteriana/microbiologia , Enterococcus faecalis/patogenicidade , Proteínas de Membrana/fisiologia , Fatores de Transcrição/fisiologia , Fatores de Virulência/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Regulação Bacteriana da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Coelhos
5.
J Bacteriol ; 195(8): 1666-79, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23378511

RESUMO

Neisseria gonorrhoeae uses a type IV secretion system (T4SS) to secrete chromosomal DNA into the surrounding milieu. The DNA is effective in transforming gonococci in the population, and this mechanism of DNA donation may contribute to the high degree of genetic diversity in this species. Similar to other F-like T4SSs, the gonococcal T4SS requires a putative membrane protein, TraG, for DNA transfer. In F-plasmid and related systems, the homologous protein acts in pilus production, mating pair stabilization, and entry exclusion. We characterized the localization, membrane topology, and variation of TraG in N. gonorrhoeae. TraG was found to be an inner-membrane protein with one large periplasmic region and one large cytoplasmic region. Each gonococcal strain carried one of three different alleles of traG. Strains that carried the smallest allele of traG were found to lack the peptidoglycanase gene atlA but carried a peptidoglycan endopeptidase gene in place of atlA. The purified endopeptidase degraded gonococcal peptidoglycan in vitro, cutting the peptide cross-links. Although the other two traG alleles functioned for DNA secretion in strain MS11, the smallest traG did not support DNA secretion. Despite the requirement for a mating pair stabilization homologue, static coculture transformation experiments demonstrated that DNA transfer was nuclease sensitive and required active uptake by the recipient, thus demonstrating that transfer occurred by transformation and not conjugation. Together, these results demonstrate the TraG acts in a process of DNA export not specific to conjugation and that different forms of TraG affect what substrates can be transported.


Assuntos
Membrana Celular/fisiologia , DNA Bacteriano/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Neisseria gonorrhoeae/metabolismo , Alelos , Técnicas Bacteriológicas , Cromossomos Bacterianos , Técnicas de Cocultura , Conjugação Genética , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas de Membrana/genética , Dados de Sequência Molecular , Neisseria gonorrhoeae/citologia , Neisseria gonorrhoeae/genética , Plasmídeos , Transformação Bacteriana
6.
PLoS One ; 7(7): e41157, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22815951

RESUMO

Staphylococcus aureus produces superantigens (SAgs) that bind and cross-link T cells and APCs, leading to activation and proliferation of immune cells. SAgs bind to variable regions of the ß-chains of T cell receptors (Vß-TCRs), and each SAg binds a unique subset of Vß-TCRs. This binding leads to massive cytokine production and can result in toxic shock syndrome (TSS). The most abundantly produced staphylococcal SAgs and the most common causes of staphylococcal TSS are TSS toxin-1 (TSST-1), and staphylococcal enterotoxins B and C (SEB and SEC, respectively). There are several characterized variants of humans SECs, designated SEC1-4, but only one variant of SEB has been described. Sequencing the seb genes from over 20 S. aureus isolates show there are at least five different alleles of seb, encoding forms of SEB with predicted amino acid substitutions outside of the predicted immune-cell binding regions of the SAgs. Examination of purified, variant SEBs indicates that these amino acid substitutions cause differences in proliferation of rabbit splenocytes in vitro. Additionally, the SEBs varied in lethality in a rabbit model of TSS. The SEBs were diverse in their abilities to cause proliferation of human peripheral blood mononuclear cells, and differed in their activation of subsets of T cells. A soluble, high-affinity Vß-TCR, designed to neutralize the previously characterized variant of SEB (SEB1), was able to neutralize the variant SEBs, indicating that this high-affinity peptide may be useful in treating a variety of SEB-mediated illnesses.


Assuntos
Enterotoxinas/metabolismo , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Animais , Proliferação de Células , Clonagem Molecular , Genes Codificadores da Cadeia beta de Receptores de Linfócitos T/genética , Variação Genética , Humanos , Leucócitos Mononucleares/metabolismo , Linfócitos/citologia , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Peptídeos/química , Estrutura Terciária de Proteína , Coelhos , Homologia de Sequência de Aminoácidos , Superantígenos/metabolismo
7.
J Biol Chem ; 287(14): 11222-33, 2012 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-22334697

RESUMO

Symptomatic gonococcal infection, caused exclusively by the human-specific pathogen Neisseria gonorrhoeae (the gonococcus), is characterized by the influx of polymorphonuclear leukocytes (PMNs) to the site of infection. Although PMNs possess a potent antimicrobial arsenal comprising both oxidative and non-oxidative killing mechanisms, gonococci survive this interaction, suggesting that the gonococcus has evolved many defenses against PMN killing. We previously identified the NG1686 protein as a gonococcal virulence factor that protects against both non-oxidative PMN-mediated killing and oxidative killing by hydrogen peroxide. In this work, we show that deletion of ng1686 affects gonococcal colony morphology but not cell morphology and that overexpression of ng1686 does not confer enhanced survival to hydrogen peroxide on gonococci. NG1686 contains M23B endopeptidase active sites found in proteins that cleave bacterial cell wall peptidoglycan. Strains of N. gonorrhoeae expressing mutant NG1686 proteins with substitutions in many, but not all, conserved metallopeptidase active sites recapitulated the hydrogen peroxide sensitivity and altered colony morphology of the Δng1686 mutant strain. We showed that purified NG1686 protein degrades peptidoglycan in vitro and that mutations in many conserved active site residues abolished its degradative activity. Finally, we demonstrated that NG1686 possesses both dd-carboxypeptidase and endopeptidase activities. We conclude that the NG1686 protein is a M23B peptidase with dual activities that targets the cell wall to affect colony morphology and resistance to hydrogen peroxide and PMN-mediated killing.


Assuntos
Farmacorresistência Bacteriana , Peróxido de Hidrogênio/farmacologia , Metaloproteases/metabolismo , Neisseria gonorrhoeae/efeitos dos fármacos , Fatores de Virulência/metabolismo , Antibacterianos/farmacologia , Carboxipeptidases/metabolismo , Domínio Catalítico , Sequência Conservada , Endopeptidases/metabolismo , Escherichia coli/metabolismo , Metaloproteases/química , Metaloproteases/genética , Mutação , Neisseria gonorrhoeae/citologia , Neisseria gonorrhoeae/enzimologia , Neisseria gonorrhoeae/genética , Neutrófilos/microbiologia , Peptidoglicano/metabolismo , Periplasma/efeitos dos fármacos , Periplasma/enzimologia , Fenótipo , Proteólise/efeitos dos fármacos , Fatores de Virulência/química , Fatores de Virulência/genética
8.
Biochemistry ; 50(33): 7157-67, 2011 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-21749039

RESUMO

Pulsed-field gel electrophoresis (PFGE) clonal type USA200 is the most widely disseminated Staphylococcus aureus colonizer of the nose and is a major cause of toxic shock syndrome (TSS). Exoproteins derived from these organisms have been suggested to contribute to their colonization and causation of human diseases but have not been well-characterized. Two representative S. aureus USA200 isolates, MNPE (α-toxin positive) and CDC587 (α-toxin mutant), isolated from pulmonary post-influenza TSS and menstrual vaginal TSS, respectively, were evaluated. Biochemical, immunobiological, and cell-based assays, including mass spectrometry, were used to identify key exoproteins derived from the strains that are responsible for proinflammatory and cytotoxic activity on human vaginal epithelial cells. Exoproteins associated with virulence were produced by both strains, and cytolysins (α-toxin and γ-toxin), superantigens, and proteases were identified as the major exoproteins, which caused epithelial cell inflammation and cytotoxicity. Exoprotein fractions from MNPE were more proinflammatory and cytotoxic than those from CDC587 due to high concentrations of α-toxin. CDC587 produced a small amount of α-toxin, despite the presence of a stop codon (TAG) at codon 113. Additional exotoxin identification studies of USA200 strain [S. aureus MN8 (α-toxin mutant)] confirmed that MN8 also produced low levels of α-toxin despite the same stop codon. The differences observed in virulence factor profiles of two USA200 strains provide insight into environmental factors that select for specific virulence factors. Cytolysins, superantigens, and proteases were identified as potential targets, where toxin neutralization may prevent or diminish epithelial damage associated with S. aureus.


Assuntos
Citotoxinas/imunologia , Enterotoxinas/imunologia , Exotoxinas/imunologia , Choque Séptico/imunologia , Infecções Estafilocócicas/imunologia , Staphylococcus aureus/imunologia , Superantígenos/imunologia , Vagina/imunologia , Animais , Cromatografia Líquida de Alta Pressão , Citotoxinas/metabolismo , Eletroforese em Gel de Campo Pulsado , Enterotoxinas/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Exotoxinas/metabolismo , Feminino , Humanos , Immunoblotting , Imunoglobulina G/imunologia , Interleucina-8/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/microbiologia , Coelhos , Choque Séptico/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Superantígenos/metabolismo , Suínos , Vagina/metabolismo , Vagina/microbiologia , Fatores de Virulência
9.
Infect Immun ; 79(1): 342-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20937760

RESUMO

Staphylococcus aureus is a prominent human pathogen and a leading cause of community- and hospital-acquired bacterial infections worldwide. Herein, we describe the identification and characterization of the S. aureus 67.6-kDa hypothetical protein, named for the surface factor promoting resistance to oxidative killing (SOK) in this study. Sequence analysis showed that the SOK gene is conserved in all sequenced S. aureus strains and homologous to the myosin cross-reactive antigen of Streptococcus pyogenes. Immunoblotting and immunofluorescence analysis showed that SOK was copurified with membrane fractions and was exposed on the surface of S. aureus Newman and RN4220. Comparative analysis of wild-type S. aureus and an isogenic deletion strain indicated that SOK contributes to both resistance to killing by human neutrophils and to oxidative stress. In addition, the S. aureus sok deletion strain showed dramatically reduced aortic valve vegetation and bacterial cell number in a rabbit endocarditis model. These results, plus the suspected role of the streptococcal homologue in certain diseases such as acute rheumatic fever, suggest that SOK plays an important role in cardiovascular and other staphylococcal infections.


Assuntos
Proteínas de Bactérias/metabolismo , Endocardite Bacteriana/microbiologia , Staphylococcus aureus/metabolismo , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Biologia Computacional , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Humanos , Neutrófilos/fisiologia , Estresse Oxidativo , Polimorfismo de Fragmento de Restrição , Coelhos , Fatores de Virulência/química , Fatores de Virulência/genética
10.
Proc Natl Acad Sci U S A ; 107(32): 14407-12, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660751

RESUMO

Biofilms are surface-associated communities of microbes encompassed by an extracellular matrix. It is estimated that 80% of all bacterial infections involve biofilm formation, but the structure and regulation of biofilms are incompletely understood. Extracellular DNA (eDNA) is a major structural component in many biofilms of the pathogenic bacterium Staphylococcus aureus, but its role is enigmatic. Here, we demonstrate that beta toxin, a neutral sphingomyelinase and a virulence factor of S. aureus, forms covalent cross-links to itself in the presence of DNA (we refer to this as biofilm ligase activity, independent of sphingomyelinase activity) producing an insoluble nucleoprotein matrix in vitro. Furthermore, we show that beta toxin strongly stimulates biofilm formation in vivo as demonstrated by a role in causation of infectious endocarditis in a rabbit model. Together, these results suggest that beta toxin cross-linking in the presence of eDNA assists in forming the skeletal framework upon which staphylococcal biofilms are established.


Assuntos
Toxinas Bacterianas/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Hemolisinas/metabolismo , Nucleoproteínas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Staphylococcus/crescimento & desenvolvimento , Animais , Catálise , DNA Bacteriano , Endocardite , Coelhos , Staphylococcus/patogenicidade
11.
Mol Microbiol ; 71(1): 158-71, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19017267

RESUMO

Neisseria gonorrhoeae (Gc), an obligate human bacterial pathogen, utilizes pilin antigenic variation to evade host immune defences. Antigenic variation is driven by recombination between expressed (pilE) and silent (pilS) copies of the pilin gene, which encodes the major structural component of the type IV pilus. We have investigated the role of the GcRecQ DNA helicase (GcRecQ) in this process. Whereas the vast majority of bacterial RecQ proteins encode a single 'Helicase and RNase D C-terminal' (HRDC) domain, GcRecQ encodes three tandem HRDC domains at its C-terminus. Gc mutants encoding versions of GcRecQ with either two or all three C-terminal HRDC domains removed are deficient in pilin variation and sensitized to UV light-induced DNA damage. Biochemical analysis of a GcRecQ protein variant lacking two HRDC domains, GcRecQDeltaHRDC2,3, shows it has decreased affinity for single-stranded and partial-duplex DNA and reduced unwinding activity on a synthetic Holliday junction substrate relative to full-length GcRecQ in the presence of Gc single-stranded DNA-binding protein (GcSSB). Our results demonstrate that the multiple HRDC domain architecture in GcRecQ is critical for structure-specific DNA binding and unwinding, and suggest that these features are central to GcRecQ's roles in Gc antigenic variation and DNA repair.


Assuntos
Variação Antigênica , Reparo do DNA , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/genética , Neisseria gonorrhoeae/genética , RecQ Helicases/metabolismo , DNA Cruciforme/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/metabolismo , Neisseria gonorrhoeae/imunologia , Neisseria gonorrhoeae/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RecQ Helicases/genética , RecQ Helicases/imunologia
12.
J Bacteriol ; 189(15): 5421-8, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17526702

RESUMO

Type IV secretion systems require peptidoglycan lytic transglycosylases for efficient secretion, but the function of these enzymes is not clear. The type IV secretion system gene cluster of Neisseria gonorrhoeae encodes two peptidoglycan transglycosylase homologues. One, LtgX, is similar to peptidoglycan transglycosylases from other type IV secretion systems. The other, AtlA, is similar to endolysins from bacteriophages and is not similar to any described type IV secretion component. We characterized the enzymatic function of AtlA in order to examine its role in the type IV secretion system. Purified AtlA was found to degrade macromolecular peptidoglycan and to produce 1,6-anhydro peptidoglycan monomers, characteristic of lytic transglycosylase activity. We found that AtlA can functionally replace the lambda endolysin to lyse Escherichia coli. In contrast, a sensitive measure of lysis demonstrated that AtlA does not lyse gonococci expressing it or gonococci cocultured with an AtlA-expressing strain. The gonococcal type IV secretion system secretes DNA during growth. A deletion of ltgX or a substitution in the putative active site of AtlA severely decreased DNA secretion. These results indicate that AtlA and LtgX are actively involved in type IV secretion and that AtlA is not involved in lysis of gonococci to release DNA. This is the first demonstration that a type IV secretion peptidoglycanase has lytic transglycosylase activity. These data show that AtlA plays a role in type IV secretion of DNA that requires peptidoglycan breakdown without cell lysis.


Assuntos
Neisseria gonorrhoeae/enzimologia , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Bacteriólise , Bacteriófago lambda/crescimento & desenvolvimento , Transporte Biológico/fisiologia , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Mutação , Neisseria gonorrhoeae/genética , Peptidoglicano Glicosiltransferase/genética , Peptidoglicano Glicosiltransferase/isolamento & purificação
13.
Microbiology (Reading) ; 151(Pt 9): 3081-3088, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16151218

RESUMO

Neisseria gonorrhoeae releases monomeric peptidoglycan (PG) fragments during growth. These PG fragments affect pathogenesis-related phenotypes including induction of inflammatory cytokines and killing of ciliated fallopian tube cells. Although the biological activities of these molecules have been established in multiple systems, the genes and gene products responsible for their production in N. gonorrhoeae have not been determined. The authors previously identified genes for three lytic transglycosylase homologues (ltgA, ltgB and ltgC) in the N. gonorrhoeae genome sequence. Mutation of ltgA was found to affect PG fragment release, and mutation of ltgC affected cell separation. In this study the effects of complete deletion or point mutations in ltgB were characterized. Point mutations were introduced by a combination of insertion-duplication mutagenesis and positive and negative selection, thereby generating selectable marker-less mutations. The ltgB deletion mutant had normal growth characteristics and was not affected in PG fragment release. When expressed in Escherichia coli, gonococcal LtgB was able to substitute for lambda endolysin to cause cell lysis. Mutation of the predicted catalytic-site glutamic acid residue did not decrease lysis in this system. However, mutation of a nearby glutamic acid residue eliminated lysis activity.


Assuntos
Neisseria gonorrhoeae/enzimologia , Peptidoglicano Glicosiltransferase/metabolismo , Escherichia coli/metabolismo , Neisseria gonorrhoeae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...